

CINEMATIQUE DU POINT

MCU - MCUA

Chapitre 4

EXERCICES

Feuille n°4
CORRECTION

La résolution des exercices se fera de façon <u>rigoureuse</u>, <u>méthodique</u> et <u>précise</u> : pas de produit en croix, pas de « petits calculs intuitifs ». De la méthode, de la méthode, de la méthode...

Exercice 1

Un moteur tourne à vitesse constante $N = 1500 \ tr \cdot min^{-1}$. On donne $\theta(0) = 0$.

- b) Donner les équations générales du mouvement.

D'après le cours, on a : (ou à retrouver par intégration et dérivation)

MCU
$$\begin{cases} \alpha(t) = 0 \\ \omega(t) = \omega_0 \\ \theta(t) = \omega_0 \cdot t + \theta_0 \end{cases}$$

c) Que signifie l'expression « $\theta(0) = 0$ »?

A la date t = 0 s, l'angle du rotor par rapport au stator est nul : $\theta = 0$.

d) Déterminer les **équations spécifiques** du mouvement (rechercher la(les) constante(s) d'intégration).

⇒ Pour l'accélération :

Pas de soucis, elle est nulle ; on a directement $\alpha(t) = 0$

⇒ Pour la vitesse :

Pas de soucis, elle est constante et on la donne :
$$\omega_0 = \frac{\pi \cdot N}{30} = \frac{\pi \times 1500}{30} = 157,1 \ rad \cdot s^{-1}$$

Donc, $\omega(t) = 157,1$

⇒ Pour la position :

Il faut trouver la constante θ_o ; pour cela, on exploite la condition particulière qui est donnée : Condition particulière en position $\theta(0) = 0$ mise dans l'équation de position $\theta(t) = \omega_o \cdot t + \theta_o$: $0 = 157, 1 \times 0 + \theta_o \implies \theta_o = 0 \implies \theta(t) = 157, 1 \cdot t$

e) Calculer en s la durée $T_{(200)}$ pour parcourir l'angle $\theta = 200 \ tr$.

On demande une durée pour un angle parcouru donné ; il faut prendre l'équation de position :

$$200 \times 2 \times \pi = 157, I \cdot T_{(200)} \iff T_{(200)} = \frac{400 \cdot \pi}{157, I} = 8 \text{ s}$$

ATTENTION aux unités ; on travail en radians, pas en tours, ni en degrés...

f) Calculer en tr l'angle $\theta(10)$.

On demande un angle parcouru pour une durée donnée ; il faut prendre l'équation de position :

$$\theta(10) = 157, 1 \times 10 = 1571 \text{ rad}$$

 $\theta(10) = \frac{1571}{2\pi} = 250 \text{ tr}$

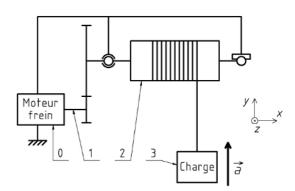
Exercice 2 (vitesse périphérique)

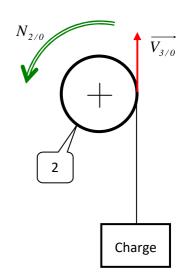
Une charge (3) est élevée à l'aide d'un câble qui s'enroule sur un cylindre (2). Le rayon du cylindre vaut R=0,2~m; le cylindre, mue par un motoréducteur, tourne à la vitesse constante $N_{2/0}=0,5~tr\cdot s^{-1}$. On note $\theta_{2/0}$ l'angle que forme le cylindre (2) par rapport au bâti (0) et on donne $\theta_{2/0}(0)=0$. Le câble a une longueur totale L=5~m. On note $v_{3/0}$ la vitesse de déplacement de la charge (3) par rapport au bâti (0).

a) Calculer en $m \cdot s^{-1}$ la vitesse de déplacement $v_{3/0}$.

Une petite vue de côté pour expliquer la situation est une bonne chose à faire, même si cela n'est pas demandé :

Le bon point d'entrée est la relation $v_{3/0}=R\cdot\omega_{2/0}$ Avec $\omega_{2/0}=\pi\cdot N_{2/0}=\pi\times 0,5=1,57\ rad\cdot s^{-1}$ Attention, $N_{2/0}$ est en $tr\cdot s^{-1}$ et pas $tr\cdot min^{-1}$... $v_{3/0}=R\cdot\omega_{2/0}=0,2\times 1,57=0,314\ m\cdot s^{-1}$





b) Calculer en s la durée $T_{(200)}$ pour enrouler tout le câble.

Enrouler tout le câble de longueur connue, $L=5\,m$ implique un certain angle à parcourir par le tambour (2) : l'approche est donc purement géométrique :

On peut se rappeler de la formule du périmètre d'un cercle : $p=2\pi\cdot R$ où 2π correspond à un tour complet.

Adapté à notre situation, on a : $\Delta y = \Delta \theta_{2/0} \cdot R$

 Δy est la longueur du câble à enrouler (« y » car le déplacement de la charge a lieu sur l'axe y) $\Delta \theta_{2/0}$ est l'angle de rotation du tambour (2) par rapport au bâti (0), angle associé à la longueur Δy . Dans notre cas, $\Delta y = L = 5 \ m$; le rayon est connu : $R = 0.2 \ m$ donc tout va bien :

$$L = \Delta \theta_{2/0} \cdot R \iff \Delta \theta_{2/0} = \frac{L}{R} = \frac{5}{0.2} = 25 \text{ rad}$$

$$\Delta \theta_{2/0} = 2\pi \times 25 = 157.1 \text{ tr}$$

c) Calculer en $tr \cdot min^{-1}$ la vitesse de rotation $N_{2/0}$ ' que devrait avoir le tambour pour que le câble s'enroule complètement en une durée $T_{enroulement} = 20 \ s$.

Le câble s'enroule complètement signifie que la longueur L=5~m est à considérer et on a donc l'angle $\Delta\theta_{2/0}=25~rad$.

Le bon point d'entrée est la relation $\omega_{2/0}' = \frac{\Delta \theta_{2/0}}{\Delta t}$ (qui est une mise en œuvre de l'équation de position)

$$\omega_{2/0}' = \frac{\Delta \theta_{2/0}}{\Delta t} = \frac{25}{20} = 1,25 \text{ rad} \cdot \text{s}^{-1}$$

$$\omega_{2/0}' = \frac{2\pi \cdot N_{2/0}'}{60} \iff N_{2/0}' = \frac{60 \cdot \omega_{2/0}'}{2\pi} = \frac{60 \times 1,25}{2\pi} = 11,94 \text{ tr} \cdot \text{min}^{-1}$$

Exercice 3 (vitesse périphérique)

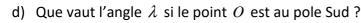
On considère notre planète, la Terre ; elle a un rayon moyen $R_T = 6400 \ km$. Sa vitesse de rotation sur elle-même est connue de tous. On la place dans un repère fixe R(C,X,Y,Z).

Soit O un point à sa surface. On pose $\theta = 90^{\circ}$ et $\lambda = 30^{\circ}$.

Attention, θ et λ sont des angles <u>orientés</u>.

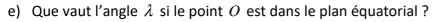
- b) Pour $\theta=90^\circ$ et $\lambda=30^\circ$, le point O est dans le plan \square (XY) \square (YZ) \square (ZX)
- c) Que vaut l'angle λ si le point O est au pole Nord ?

Dans ce cas, le point O est porté par l'axe z=Z L'angle orienté λ vaut alors $\lambda=90^\circ$

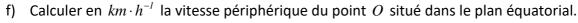


Dans ce cas, le point O est porté par l'axe z = -Z

L'angle orienté λ vaut alors $\lambda=-90^\circ$ ou, c'est pareil, $\lambda=3\times90=270^\circ$



Dans ce cas, le point O est porté par l'axe z=YL'angle orienté λ vaut alors $\lambda=0^\circ$



Dans le plan équatorial, le rayon à considérer est celui de la Terre directement :

$$V = R_T \times \omega_{T/R}$$
 avec

$$R_T = 6400 \text{ km} \equiv 6.4 \cdot 10^6 \text{ m}$$

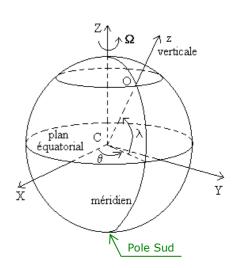
$$\omega_{T/R} = 1 \, tr \cdot jour^{-1}$$

$$\omega_{T/R} = \frac{1}{24} tr \cdot h^{-1} \equiv \frac{1}{24 \times 60} tr \cdot min^{-1} \equiv \frac{1}{24 \times 60 \times 60} tr \cdot s^{-1} \equiv \frac{2\pi}{24 \times 60 \times 60} rad \cdot s^{-1} = 7,27 \cdot 10^{-5} rad \cdot s^{-1}$$

Soit

$$V = R_T \times \omega_{T/R} = 6.4 \cdot 10^6 \times 7.27 \cdot 10^{-5} = 465.4 \text{ m} \cdot \text{s}^{-1}$$

$$V = 465.4 \times 3.6 = 1675.5 \text{ km} \cdot h^{-1}$$



g) Calculer en $km \cdot h^{-1}$ la vitesse périphérique du point O pour $\lambda = 30^\circ$, $\lambda = 45^\circ$ et $\lambda = 60^\circ$. $^{\circ}$ faire une figure de principe dans le plan (yz) et exprimer la vitesse en fonction de l'angle λ .

Une petite figure de principe, bien que non demandée, sera très utile ; il faut penser à faire ce genre de choses...

Elle nous permet ici d'établir ce qui suit :

$$\cos \lambda = \frac{r(\lambda)}{R_T} \iff r(\lambda) = R_T \cdot \cos \lambda$$

$$V = r(\lambda) \times \omega_{T/R}$$

$$= R_T \cdot \cos \lambda \times \omega_{T/R}$$

$$= 6.4 \cdot 10^6 \times 7.27 \cdot 10^{-5} \cdot \cos \lambda$$

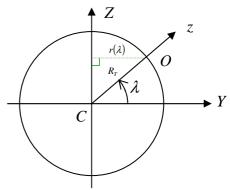
$$V = 465.3 \cdot \cos \lambda$$

$$\frac{m \cdot s^{-1}}{}$$

$$V = 3.6 \times 465.3 \cdot \cos \lambda$$

$$V = 1642.7 \cdot \cos \lambda$$

$$k\underline{m \cdot h^{-1}}$$



$$\lambda = 30^{\circ} \rightarrow V = 1642.7 \cdot \cos 30 = 1422.6 \text{ km} \cdot h^{-1}$$

$$\lambda = 45^{\circ} \rightarrow V = 1642.7 \cdot \cos 45 = 1161.5 \text{ km} \cdot h^{-1}$$

$$\lambda = 60^{\circ} \rightarrow V = 1642.7 \cdot \cos 60 = 821.3 \text{ km} \cdot h^{-1}$$

On peut remarquer qu'en posant $\lambda = 0^{\circ}$, on a :

$$\lambda = 0^{\circ} \rightarrow V = 1642.7 \cdot \cos 0 = 1642.7 \text{ km} \cdot h^{-1}$$

On retombe (aux arrondis près) sur le résultat pour lequel le point O est dans le plan équatorial (voir f).

h) La vitesse périphérique dépend de l'angle θ ? ∇ vrai \Box faux

Exercice 4

Un moteur passe de 0 à $1000~tr \cdot min^{-1}$ en une durée $T_I = 4~s$. On suppose l'accélération constante. On donne $\theta(0) = 0$ et $\omega(0) = 0$.

- a) Type de mouvement : ☐ MCU
- ✓ MCUA
- car : accélération angulaire constante
- b) Donner les équations générales du mouvement.

D'après le cours, on a : (MCUA et MCUV désignant le même cas particulier)

MCUV
$$\begin{cases} \alpha(t) = \alpha_0 \\ \omega(t) = \alpha_0 \cdot t + \omega_0 \\ \theta(t) = \frac{1}{2} \alpha_0 \cdot t^2 + \omega_0 \cdot t + \theta_0 \end{cases}$$

- c) Que signifie les expressions « $\theta(0) = 0$ » et « $\omega(0) = 0$ »?
- $\theta(0) = 0$ signifie qu'à la date t = 0, l'angle du rotor par rapport au stator est nul.
- $\omega(0) = 0$ signifie qu'à la date t = 0, la vitesse de rotation du rotor par rapport au stator est nulle.
 - d) Déterminer les équations spécifiques du mouvement.

\Rightarrow Concernant l'accélération angulaire $\alpha(t)$:

On sait qu'elle est constante et qu'elle vaut $lpha_{\!\scriptscriptstyle 0}$; reste à trouver $lpha_{\!\scriptscriptstyle 0}$...

Comme l'énoncé nous donne la variation de vitesse sur une durée donnée, on pose :

$$\alpha_0 = \frac{\Delta \omega}{\Delta t}$$
 avec:

$$\Delta \omega = \omega_2 - \omega_1 = \frac{\pi \cdot N_2}{30} - \frac{\pi \cdot N_1}{30} = \frac{\pi \times 1000}{30} - \frac{\pi \times 0}{30} = 104.7 \text{ rad} \cdot \text{s}^{-1}$$

$$\Delta t = 4 \text{ s}$$

Soit,

$$\alpha_0 = \frac{\Delta \omega}{\Delta t} = \frac{104.7}{4} = 26.18 \text{ rad} \cdot \text{s}^{-2}$$

$$\alpha(t) = 26,18$$

\Rightarrow Concernant la vitesse angulaire $\omega(t)$:

$$\omega(0) = 0 \rightarrow 0 = 26,18 \times 0 + \omega_0 \iff \omega_0 = 0$$

$$\omega(t) = 26,18 \cdot t$$

\Rightarrow Concernant la position angulaire $\theta(t)$:

$$\theta(0) = 0 \rightarrow 0 = 13,09 \times 0^2 + \theta_0 \Leftrightarrow \theta_0 = 0$$

$$\theta(t) = 13,09 \cdot t^2$$

e) Calculer en $tr \cdot min^{-1}$ la vitesse angulaire N(5).

$$\omega(5) = 26,18 \times 5 = 130,9 \text{ rad} \cdot \text{s}^{-1}$$

$$\omega = \frac{2 \cdot N}{60} \iff N = \frac{60 \cdot \omega}{2\pi}$$

$$N(5) = \frac{60 \cdot \omega(5)}{2\pi} = \frac{60 \times 130.9}{2\pi} = 1250 \text{ tr} \cdot \text{min}^{-1}$$

f) Calculer en deg la position angulaire $\theta(5)$.

$$\theta(5) = 13,09 \times 5^2 = 327,25 \text{ rad}$$

$$\theta(5) = \frac{327,25 \times 360}{2 \cdot \pi} = 18750 \ deg$$

g) Calculer en s la durée $T_{\scriptscriptstyle I}$ nécessaire pour passer de $N=0~tr\cdot min^{-1}$ à $N=500~tr\cdot min^{-1}$.

$$\alpha_0 = \frac{\Delta \omega}{\Delta t}$$
 avec $\Delta t = T_1$ soit, $T_1 = \frac{\Delta \omega}{\alpha_0} = \frac{1}{26,18} \cdot \left(\frac{2\pi \times 500}{60} - \frac{2\pi \times 0}{60}\right) = 2 s$

h) Calculer en s la durée T_2 nécessaire pour passer de $N=500~tr\cdot min^{-1}$ à $N=1000~tr\cdot min^{-1}$.

$$\alpha_0 = \frac{\Delta \omega}{\Delta t}$$
 avec $\Delta t = T_1$ soit, $T_2 = \frac{\Delta \omega}{\alpha_0} = \frac{1}{26.18} \cdot \left(\frac{2\pi \times 1000}{60} - \frac{2\pi \times 500}{60}\right) = 2 \text{ s}$

A accélération constante, les différences de vitesses sont égales pour des durées égales.

Exercice 5 (long car trois phases à étudier)

Un moteur passe de 0 à $10000~tr\cdot min^{-1}$ en une durée $T_{0-10000}=1~s$. Une fois la vitesse $N=10^4~tr\cdot min^{-1}$ atteinte, elle est maintenue constante pendant une durée $T_{II}=4~s$ puis revient à vitesse nulle en $T_{III}=2~s$. On suppose que les accélérations sont constantes. On donne $\theta(0)=0$ et $\omega(0)=0$.

a) Compléter le tableau synthétique dans la limite des renseignements fournis par l'énoncé.

Phase	Phase I (accélération)	Phase II (vitesse constante)	Phase III (ralentissement)
Date de début (s)			
Date de fin (s)			
Durée (s)			
Accélération $\left(m\cdot s^{-2}\right)$			
Vitesse initiale $(m \cdot s^{-I})$			
Vitesse finale $(m \cdot s^{-I})$			
Variation de vitesse $\left(m\cdot s^{-I}\right)$			
Position initiale (m)			
Position finale (m)			
Variation de position $\binom{m}{}$ (distance parcourue)			

- b) Donner les équations générales du mouvement de la phase I : $\alpha_I(t)$, $\omega_I(t)$ et $\theta_I(t)$.
- c) Donner les équations générales du mouvement de la phase I : $\alpha_{{}_{\! I\! I}}(t)$, $\omega_{{}_{\! I\! I}}(t)$ et $\theta_{{}_{\! I\! I}}(t)$.
- d) Donner les équations générales du mouvement de la phase I : $\alpha_{III}(t)$, $\omega_{III}(t)$ et $\theta_{III}(t)$.
- e) Réaliser les graphes des positions, vitesses et accélération en renseignant numériquement ce qui est connu et littéralement ce qui ne l'est pas.
- f) Déterminer les équations spécifiques du mouvement des phases I, II et III.
- g) Poser les calculs nécessaires pour compléter le tableau de synthèse.